33 research outputs found

    Real-time simulation and hardware-in-the-loop approaches for integrating renewable energy sources into smart grids  : challenges & actions

    Get PDF
    The integration of distributed renewable energy sources and the multi-domain behaviours inside the cyber-physical energy system (smart grids) draws up major challenges. Their validation and roll out requires careful assessment, in term of modelling, simulation and testing. The traditional approach focusing on a particular object, actual hardware or a detailed model, while drastically simplifying the remainder of the system under test, is no longer sufficient. Real-time simulation and Hardware-in-the-Loop (HIL) techniques emerge as indispensable tools for validating the behaviour of renewable sources as well as their impact/interaction to with the cyber-physical energy system. This paper aims to provide an overview of the present status-quo of real-time and HIL approaches used for smart grids and their readiness for cyber-physical experiments. We investigate the current limitations of HIL techniques and point out necessary future developments. Subsequently, the paper highlights challenges that need specific attention as well as ongoing actions and further research directions

    Contact resistance and threshold voltage extraction in n -channel organic thin film transistors on plastic substrates

    No full text
    n-channel organic thin film transistors were fabricated on polyethylene naphthalate substrates. The first part of the paper is devoted to a critical analysis of eight methods to extract the threshold voltage from the transfer characteristic in the linear regime. Next, to improve electron injection and reduce contact resistance, self-assembled monolayers (SAMs) were deposited on the gold source and drain electrodes. The subsequent modification on the current-voltage characteristics of the transistors is analyzed by the transfer line method, using a threshold-voltage-corrected gate voltage. The improved performance of the device obtained with some of the SAM treatments is attributed to both a better morphology of the semiconductor film, resulting in an increased channel mobility, and to easier electron injection, which manifests itself through a lowering of the contact resistance. Interestingly, the modulation of the contact resistance exactly follows an opposite behavior to what reported in the case of p -channel devices, which brings further evidence for that charge injection is tuned by the direction and magnitude of the dipole moment of the SAM. © 2009 American Institute of Physics
    corecore